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Josué A. Núñez
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The use of mathematical language and scientific methodol-
ogy has accompanied our everyday life since the 17th century.
Foremost is the dramatic improvement in knowledge and tech-
nological success achieved through physics and chemistry.
Such a development led, in turn, to a continuous and over-
whelming increase in new insights into physical and chemical
processes. Biology, however, appears to have faced a struggle,
already described by Erich von Holst:

The scientific method, when applied to the living world, necessar-
ily involves the fact that analysis continually progresses with regard
to endless and varied chemical and physical elementary processes.
From year to year, the ever-growing flood of facts has buried some
researchers, forcing them to abandon synthesis and an organizing
overview—often to such an extent that thoughts about inner connec-
tions among individual facts are disregarded right away, tossed aside
as being “mere speculation” before they are even considered at all.
Others are satisfied with general “holistic” or “vital” thought pro-
cesses; and only a small remainder tries to search for and follow the
trail of concrete organizational principles that are the factors within
the living creature itself, which are decisive for its rule-following,
functional context. Adoration of “pure facts” must prove to be mo-
mentous when one is talking about functional systems, whose main
achievement is the coordination of various elementary processes,
hence, above all, the central nervous system. It is indeed the case
that here there is a nightmarish (or oppressive) misunderstanding: the
many individual facts that are known stand in opposition to the quite
humble and unassuming ideas about their combined context within
the living organism. (von Holst 1956: 7–8)

Although technology achieved groundbreaking developments
through the analysis of the living world, biology has not ben-
efited similarly from technology. Indeed, current biological
research frequently misjudges the complexity of the living
world, as well as the explanatory limits of ontological reduc-
tionism (Lorenz 1973; Mayr 1982; Rose 1997). This occurs
even when it has long been accepted that evolving mecha-
nisms of complex biological systems become, on average,
exceedingly elaborate from an engineering perspective, and
that natural selection does not operate on their geometrical
structure, but, rather, on their ensuing functionality. The mis-
judgments referred to above, therefore, can be thought of as
a corollary of teleology (Mayr 1982), which has long influ-
enced the development of biology. Interestingly, von Holst
continued:

Thus it was to be expected that powers from outside would some-
day flow into this vacuum. This process has now gradually begun,
and its powers come out of a technique that had learned (during the
construction of continually more perfect machines, self-regulating,
computing, conclusion-making and archiving) how to “think bio-
logically.” Thus the technique followed exactly the path that most
biologists had given up on. (von Holst 1956: 7–8)

In this early statement, von Holst referred to concepts aris-
ing from the then new fields of information theory (Shannon
1948), cybernetics, and bionics (Wiener 1948). A purpose-
ful account of these fields lies beyond the scope of this arti-
cle, however. Here we focus on the relationship between the
overwhelming complexity of the living world and a purpose-
ful, modeling approach to biology. This type of approach has
largely been used in biology and proved to be beneficial, but
appears to be almost unknown to the new generations of biolo-
gists. We also present a few examples aimed at illustrating how
the use of such an approach can improve our understanding
of phenotypic functions; these examples arise from the work
carried out by one of us (J.A.N.) during several decades of
research.
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Early Influences of Information Theory
and Cybernetics

Attneave (1959) described information as an abstract quantity,
“something,” neither matter nor energy, that we gain by read-
ing or listening, or by directly observing the world around us,
such that it removes or reduces our current level of uncertainty;
this concept was poorly understood before Shannon’s (1948)
pioneering work. Cybernetics, described by Wiener (1948) as
the science of control and communication, developed in close
correlation to this concept (e.g., von Bertalanffy 1968), and
provided biologists with a new way of approaching questions
about the living world, particularly with respect to processes
such as communication and the regulation of goal-seeking be-
haviors (e.g., Hassenstein 1966). Furthermore, one is tempted
to assume that cybernetics helped in rejecting the remaining
influences of vitalism (Driesch 1951), still present at the begin-
ning of the 20th century, i.e., underlying the conviction that life
was more than mere physics and complex chemistry, causal
agencies as “entelechies” and “vital forces” were still used
to explain communication and the regulation of goal-seeking
behavior (Mayr 1982).

Starting from single cells, the entire living world is made
up of complex systems. Simon described these systems as
those in which “the whole is more than the sum of the parts,
not in an ultimate, metaphysical sense but in the important
pragmatic sense that, given the properties of the parts and the
laws of their interaction, it is not a trivial matter to infer the
properties of the whole” (Simon 1962: 468).

Since the middle of the 20th century it became clear that
the seemingly goal-directed processes of the living world are
not in conflict with physicochemical explanations (Küpfmüller
and Poklekowski 1956), although a distinction was still nec-
essary between simple mechanistic approaches to biology and
the study of the structure of complex organisms. This has been
clearly stated by Mayr:

The explanatory equipment of the physical sciences is insufficient
to explain complex living systems and, in particular, the interplay
between historically acquired information and the responses of these
genetic programs to the physical world. The phenomena of life have
a much broader scope than the relatively simple phenomena dealt
with by physics and chemistry. This is why it is just as impossible
to include biology in physics as it is to include physics in geometry.
(Mayr 1982: 52–53)

Together with information theory and cybernetics, a new ap-
plied science developed during the 1950s, usually referred to
as bionics or biomimetics (Wiener 1948). It focused on the
simulation of technical, adaptive solutions found in nature in
order to improve task solving and the optimization of different
types of processes within the context of technology. Both cy-
bernetics and bionics then showed that phenomena typically
observed in nature, such as goal-seeking behavior and commu-
nication, can successfully be simulated by artificial, technical

systems. As a sort of side effect of this successful transfer
from biology to technology, biological research, at the time
focused almost exclusively upon the geometrical structure of
its objects of interest, began to incorporate concepts embed-
ded in these new technical fields into the study of numerous
physiological processes (e.g., Lorenz 1978). An analysis of
diuresis in insects (Núñez 1956) helps to illustrate an early
study based upon technical concepts. In the beetle Anisotar-
sus cupripennis, the volume of haemolymph remains nearly
constant, and its artificially induced variations are rapidly com-
pensated. However, when larvae lacking their protocerebrum
were exposed to water-saturated air, their haemolymph vol-
ume and body weight increased significantly, due to water that
was absorbed (but not excreted) through the animals’ body
surface. This finding pointed toward a regulatory mechanism
controlling the insects’ excretory system, i.e., their nervous
system must have computed a measure somehow related to
the hemolymph volume, and evaluated it against a reference
value via one or more feedback mechanisms. Indeed, it turned
out that sensory information from abdominal stretch recep-
tors actually constitutes the input of a feedback mechanism
regulating water balance in this and other species of insects
(Núñez 1956). This work also gave us the first evidence for
a diuretic hormone in insects, the source of which depends
upon cells of the dorsal protocerebrum (Núñez 1956). We now
know that both excretion and water balance are controlled by
diuretic and anti-diuretic hormones produced, stored, and re-
leased in the insect nervous system (Coast 2001). Eventually,
the application of concepts from the theory of control also
shed light on various fields of biological research. And the
lesson was this: the identification of organizing principles and
regulatory mechanisms in complex living systems is possible
only by evaluating the functioning of the system as a whole.
Still, scientists from vast and rather different areas of biology
frequently seem to not be aware of the potential explanatory re-
ductionism within which their own views may be embedded.
Dissecting constituent parts from the functional whole may
easily lead us away from the study of organized complexity
(e.g., Dubos 1965; Lorenz 1973; Beckner 1974).

Evolution Strategy

Evolution strategy (Rechenberg [1965] 1998, 1971), or ES,
was developed in the 1960s within the general context of bion-
ics, and, specifically, the field of biologically inspired engineer-
ing algorithms. This field also gave rise to genetic algorithms
(Holland 1975), or GAs, computational models of evolution
extensively used in research on artificial-life systems (Holland
1995). GAs can be thought of as an abstraction of the ge-
netic turnover (adaptation) of candidate solutions to a problem
(genes) that arises through genetic operators (crossover and
mutation) and selection (Holland 1975). Beyer and Schwefel
(2002: 4–5) have recently defined ES as “a set of rules for
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the automatic design and analysis of consecutive experiments
with stepwise variable adjustments driving a suitably flexible
object/system into its optimal state in spite of environmental
noise”. The term “evolution strategy,” as related to engineering
algorithms (Rechenberg 1973), refers to the ES’ two original
rules, thereby resembling mutation—though not necessarily
in the sense of a random trial—and selection, as derived from
the Darwin-Wallace theory of biological evolution. In his pio-
neering studies, Rechenberg ([1965] 1998, 1971, 1973, 1978)
simultaneously changed all the variables of his system of in-
terest, and discarded each new set of variables if it diminished
the ensuing goodness of the system, thus simulating the basic
strategy of biological evolution. At the time, ES appeared to
some skeptics to be too coarse to be seriously considered in
the context of engineering, based on the impressive number of
possible configurations and iterations that might be required
to optimize the goodness of an inanimate system. Neverthe-
less, against all predictions, ES proved to successfully achieve
its goal after a surprisingly low number of “mutational steps”
(Rechenberg 1994). This success lies in the fact that complex
systems involve numerous components and their correspond-
ing nonlinear interactions. The task of optimizing the outcome
of a system comprising a single-digit number of components
can successfully rely on mathematics (Rechenberg 1994). (The
same might be true when the number of components increases
but one possesses substantial knowledge of the functioning of
the whole system.) On the contrary, while addressing complex
systems one must cope with random complexity and inde-
terminacy (Rechenberg 1994). In these cases, it is precisely
the inherent indeterminacy of the systems that explains the
adequacy of ES for task optimization.

In its simple form (Rechenberg 1973; Beyer and Schwefel
2002), ES presents two options (mutants) per iteration, and
the rate of progress in the optimization process depends upon
the mutation strength (MS), i.e., the standard deviation of each
component as related to the normally distributed mutation
vector. Optimal MS values, in addition, are independent of
the dimension of the search space. This means that the rate of
progress improves throughout successive iterations when MS
is adjusted to the proper order of magnitude, indicating, in
turn, that ES presupposes no more than the soundness of strong
causality, i.e., only small changes in the system’s components
can predict the ensuing slight variations in performance.
According to Rechenberg (1994: 36), “Strong causality
is the guide for practical acts of man, and strong causality is
also the soil of Evolution. Strong causality means prediction
of local values, and evolution occurs in the range of validity of
strong causality.” Intriguingly, the adjustment of the mutation
strength also allowed ES to optimize the optimization process
itself (Rechenberg 1994), thereby referring to evolutionary
mechanisms that promote heritable variability within popula-
tions (e.g., genetic control of mutability, sexual reproduction,
crossover and recombination, etc.). But how could one explain

that, within evolutionary processes, a mutation mean step-size
is targeted at a given “evolution window”? Rechenberg (1994)
thinks it does not happen via phenotypic characteristics, but
by changes in the strategy of some specific population param-
eters; optimization now operates on its own efficiency and the
population is the “biological invention” for the task at hand.
Similarly, evolutionary biologists stress the fact that evolution
can be thought of as the genetic turnover of the individuals
of every population from generation to generation (Mayr
and Provine 1980), although it involves not only changes
in genetic frequencies but also in adaptation and diversity
with respect to the technical solutions that enable organisms
to deal with a variable environment. Technically speaking,
therefore, ES-rules allow optimizing the functioning of a
complex system, and the same basic principles might partially
explain the diversity and specificity of the technical solutions
found in nature after 3 × 109 years of biological evolution.

Function and Form

Living systems are undoubtedly complex; unlike inanimate
objects, they exhibit random complexity and organization,
chemical uniqueness, variability, genetic programs and his-
torical nature, properties semantically crystallized through the
concepts of pleiotropy and polygeny (for a detailed account
of these properties see Mayr 1982). These concepts point to-
ward the fact that there is no linear relationship between single
genes and traits in naturally evolved systems (Dobzhansky
1970), which implies, in turn, that temporal predictions in
biology are only probabilistic (Scriven 1959). Hence, most as-
pects of living organisms are not readily comprehensible and
cannot be mathematically described, which is probably the
reason why natural selection operates on the functionality of
any given system, and not on its underlying structures. Here the
lesson is this: the complete spectrum of functions and behav-
ioral flexibility of an organism’s subsystem (e.g., an insect’s
excretory system, as in the example described above) cannot
be inferred by pure structural analyses, or such that focus on
isolated constituents. Take the case, for example, of the com-
plex structures involved in the beetles’ defensive mechanisms
(Schildknecht 1970). Coleoptera comprise the largest group of
organisms at the order level, and have evolved a rather sophis-
ticated defensive chemistry, well suited to their various living
environments. Their defensive strategy is based on exocrine
glands, called pygidial glands, which have been extensively
studied in the context of biochemistry and chemosystematics.
These glands are paired, complex structures comprising secre-
tory lobes, gathering tubes, reservoirs, discharging tubes, and
closing valves. The defensive substances produced by the lobes
are collected by the gathering tubes, stored in the reservoir and
released when the closing valve opens. While the functions of
the lobes, reservoirs, discharging tubes, and valves appeared
to be self-evident, the variable length and fine structure of the
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gathering tubes lacked explanation. Núñez (1961) found that
the glandular vesicles of the secretory cells undergo dilata-
tion when the reservoir is full, and collapse when the valve
is removed, meaning that the reservoir’s internal pressure is
transmitted into the glandular vesicles, and that the regulation
of the glands’ activity depends upon the mechanical properties
of the gathering tubes. For this kind of regulation to occur, the
structure of the tubes must allow them to experience rapid vari-
ations in their internal pressure without undergoing dilatation,
thereby ensuring the faithful transmission of pressure from the
inner reservoir toward the lobes and eventually to the secretory
cells. It turned out that this is indeed the case (Núñez 1961).
To the best of our knowledge, this technical analysis was the
first description of mechanically regulated gland activity.

The complex relationship between form and function in
evolutionary terms lies far beyond the horizon of a single or-
ganism. It involves, for example, the interplay between com-
pletely different, still related species. Consider the coevolu-
tion of flowers and insect pollinators (Núñez 1975). Insect-
mediated spore dispersal has probably existed since Devonian
time (Kevan and Baker 1983), and modern flowers can be
thought of as structures evolved to maximize attraction and
minimize energy expenditure. Floral attraction appears to have
initially been exerted through pollen, but became enhanced by
the simultaneous presentation of sugars secreted by special-
ized glands, called nectaries, which in its early stages probably
helped spore germination (Kevan and Baker 1983). Proteins
are pollen’s basic components, equivalent to sugars with re-
spect to their gross energy value (∼4 Kcal/g), but their syn-
thesis, relative to that of sugars, demands additional (∼34%)
energy. Flowers, therefore, improve their economy by substi-
tuting fractions of their pollen loads with sugar, which might
explain, in turn, the drop in the number of stamens observed
in flowers offering both pollen and nectar (Percival 1965).
Moreover, reducing the level of uncertainty of the prospective
pollinators also enhances attraction. Scents associated with
pollen and nectar, as well as floral shapes and colors, cer-
tainly constitute a guiding code for insect pollinators (von
Frisch 1967; Heinrich 1975; Menzel 1985). They thus im-
prove their energy gain by reducing their searches and handling
times. In the course of evolution, flowers might have reduced
the quantity and diversity of ambiguous structures—initially
adapted for ensuring pollination—by means of signals whose
functions became highly specific. Ophrys orchids nicely illus-
trate the concept of “informational simulation” (Kullenberg
and Bergström 1973). They produce scents that closely match
the pheromones of sexually receptive females of Gorytes hy-
menoptera, and their petals resemble the insects’ antennae,
eyes, and wings. The overall result of this mimicry is that they
become highly attractive to the males of this species, which ef-
ficiently serve pollination in their efforts to copulate with the
flower. The plant thus produces nothing but information for

the insect pollinator. Interestingly, optimization seems to have
molded not only the floral components that may directly mod-
ulate the foraging choices of pollinating insects (like colors,
scents and flower morphology), but also the temporal program-
ming of both nectar secretion and pollen presentation, which
are well-coordinated with physically relevant environmental
factors as well as the pollinators’ foraging rhythms (Rathcke
and Lacey 1985). Complex organizational structures in mu-
tual interaction arise by incorporating the pollinator side into
this scenario: While plants tend to optimize pollination by
reducing their energy expenditure, pollinators enhance food
gain by optimizing the mechanisms underlying their foraging
decisions (Núñez 1966). Functions are critical in this con-
text, and it is reasonable to expect a true network of opposing
control systems, energetically adapted to one another and to
their corresponding physical environments. Most important is
this: in this and many other biological examples, neither the
structure of the subsystems involved nor the semi-autonomous
functions they serve predict the efficiency of the system as a
whole. Perhaps the most prominent examples of the nonlinear
relationship between form and function arise from the study
of the human brain (Rose 2005).

Are There “Functional” Fractals?

Holland (1995) states that all complex adaptive systems can
be described in terms of common properties (i.e., aggregation,
nonlinearity, flows, and diversity) and mechanisms (i.e., tag-
ging and internal models). Increasing complexity in addition
leads to threshold-point phenomena, although the properties
and mechanisms of these complex adaptive systems appear to
not depend—at least not necessarily—on the number of ag-
gregating agents (Holland 1995). It follows, therefore, that the
single agents of a multi-agent aggregate might also be subject
to selection. Since natural selection operates on phenotypic
efficiency, we ask whether the single, interacting subsystems
of a complex living system may also be selected on the basis
of their individual, semi-autonomous efficiency. Here we refer
to “functional” entities primarily defined on the basis of their
information processing capacities, and their role within the
system’s inherent hierarchical organization, either exclusive
or inclusive, irrespective of their geometrical limits. We do
not conceive these entities as the ultimate units of selection,
however. Rather, we ask whether their individual efficiency
may vary autonomously, and whether they may fulfill, at least
theoretically, the necessary requirements to be conceived as
parallel, albeit second-order, units of selection. In fact, no
matter what one designates as a possible unit of selection,
it will only exist as long as it is functionally embedded in
a complex adaptive system. This by no means implies that
natural selection will not operate on the efficiency of the sys-
tem as a whole, but it does mean that any suitable approach
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aimed at explaining the functioning of a complex living system
will strongly depend upon the study of these integrated, self-
regulated functional subsystems, which will in turn exhibit
self-similarity and independent abilities for handling informa-
tion. They therefore cannot be isolated elements, like cells or
molecules, but are still expected to be methodologically ac-
cessible without suffering from ontological damage (Lorenz
1973; Ayala 1974). Remarkably, research on animal behavior
and physiology already had given us precise descriptions of
complex functional entities, which are relatively independent
and exhibit self-similarity and successful information process-
ing (see, e.g., Barlow 1961; Reichardt and MacGinitie 1962;
Lorenz 1978). Note that this concept is reminiscent of Ashby’s
(1956) account of black boxes, originally coined in the context
of engineering. Black boxes, however, are defined on the basis
of geometrical arrangements, and their possible functions are
constrained a priori, since their otherwise unknown contents
can only be inferred via specific input-output relationships. In
contrast, we focus on entities that become evident only through
their function, irrespective of their geometry. It follows, then,
that they are intangible in the absence of the entire operating
system, due to the fact that the performances they serve are
part and parcel of the system at its higher organization level.

Mandelbrot (1975) coined the term “fractal” while re-
ferring to structures that show self-similarity, scale invari-
ance, and Hausdorff-Besicovitch dimension. His landmark
work eventually led to full-fledged theories of the geome-
try of complex structures, which helped in describing irregular
and fragmented geometrical patterns found in nature (Mandel-
brot 1982). In principle, therefore, fractals account for shapes,
without reference to functions. Nevertheless, when conceived
as functional entities based on their abstract, distinctive prop-
erties, fractals may also be embedded into structures (living
systems) of hierarchically organized, functional units for infor-
mation processing (subsystems), and account for the technical
capacities of the living systems at their higher organization
level. (One might still argue about how to designate these
units, but it seems that their most salient features become
evident even in highly complex human endeavors; e.g., War-
necke 1992.) Theoretical accounts on the evolution of repli-
cating systems postulate that systems of a given order might
have emerged via the combination of the functional properties
of simpler precursor systems (Mereschkowsky 1920; Taylor
1974; Margulis 1993; Knoll 2003; Cheng et al. 2004). Here we
hypothesize that it is a multidimensional topology of functional
fractals that allows living systems to handle large amounts of
information and respond to the technical challenges imposed
by the environment. These functional entities might be distin-
guished according to both the type of information they handle
and their information-processing abilities, and will determine
the functioning of the entire organism on the basis of their
self-organizing capacities.

Conclusion

Early in the 20th century, biology still focused almost ex-
clusively on the geometry of nature, thereby describing com-
plex structures across phyla. It was within this context that a
growing understanding of regulatory mechanisms and differ-
ent forms of communication underlying the functioning of arti-
ficial, complex systems gave rise to new perspectives about the
relationship between form and function (e.g., von Holst 1956).
Cybernetics (Wiener 1948) nurtured biology with universal
principles. The power of mutation and selection, in addition,
became empirically evident by simulating the fundamentals
of evolution strategy (Rechenberg 1994). Furthermore, these
simulations demonstrated that the process of optimization does
not depend linearly upon the number of mutational steps, and
that it only presupposes the soundness of strong causality. All
these achievements led, in turn, to a more accurate comprehen-
sion of the interplay between natural selection and the behavior
of evolving organisms, which was nicely illustrated by the de-
velopment of ethology in the previous century (Lorenz 1978).
Hence, it is fair to postulate that, since the 1950s, new vistas
based on technical aspects of the living systems have strongly
influenced the development of current biological thought.

Natural selection operates upon the efficiency of complex
adaptive systems. It follows that only systems or subsystems
that exhibit their own dynamics, but not their isolated, con-
stitutive elements, can be thought of as the subject matter of
selection. Fractals (Mandelbrot 1975), conceived as techno-
logical units serving specific functions, i.e., without reference
to their geometrical boundaries but only to their self-similarity
and scale invariance, appear to be suitable entities to con-
sider in the study of the functional capacities of the living
world. These functional entities, however, cannot be identi-
fied or characterized by molecular or morphological, single-
character classifications.

More than two decades ago, Mayr stated that a new phi-
losophy of biology was needed, and wrote: “This will include
and combine the cybernetic-functional-organizational ideas of
functional biology with the population-historical program-
uniqueness-adaptedness concepts of evolutionary biology”
(Mayr 1982: 73). Here we claim that current biology needs to
become less vulnerable to explanatory reductionism. For this
to be accomplished, however, emphasis is necessary on the
analysis of the technical organization of living systems. This
might allow new generations of biologists to strengthen the
course that biology took after the enunciation of the Darwin-
Wallace theory of natural selection.
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